Internet Industry Search Engine

How AI can improve network capacity planning

Source: networkworld.com

Feb 5, 2019 6:00 AM 1+ week ago

Network capacity planning aims to ensure that sufficient bandwidth is provisioned, allowing network SLA targets, such as delay, jitter, loss, and availability, to be reliably met. It's a complex, error-prone task with serious financial implications. Until recently, the network data necessary for insightful capacity planning was generally only available via static, historical, after-the-fact reports. This situation is now rapidly changing.To read this article in full, please click here(Insider Story)...Read more.

Search Builder

(Click to add to search box)
Search Suggestions Level 1
network capacity planning  capacity planning  network SLA targets  network traffic patterns  Carnegie Mellon University  network monitoring tools  network AI technology  workforce management software  network data  network traffic  AI technology  capital expenditures  network development  data points  network conditions  traffic data  risk appetite  Doug Tamasanis  virtualized network  AI system  systems engineer  Marcel Shaw  Tamasanis notes  peak periods  traffic bursts  service provider  Such plans  cloud environments  resource plans  assistant professor  link utilization  network controller  analytics model  business goals  Duval Yeager  Yan Huang  business technologies  intertemporal patterns  network structure  Tepper School  proactive actions  AI solution  demand prediction  demand forecasts  
Search Suggestions Level 2
network capacity planning  network superiority  
Search Suggestions Level 3
workforce management software  network monitoring tools  network traffic patterns  network capacity planning  network AI technology  Carnegie Mellon University  capacity planning  West Network Assurance  Verizon isn t  team competition  Data Scientist  AI technology  network traffic  AI system  peak periods  Vice President  Marcel Shaw  systems engineer  Tamasanis notes  AI solution  network team  couldn t  data traffic  data scientists  use AI  Principal Engineer  Abby Knowles  customer experience  traffic bursts  Engineering Specialist  Ananth Sankarasubramanian  customers experience  Machine Learning  systems engineers  Doug Tamasanis  STEM careers  business technologies  service provider  intertemporal patterns  demand prediction  demand forecasts  network data  Tepper School  assistant professor  resource plans  Yan Huang  Duval Yeager  business goals  analytics model  network controller  link utilization  network structure  proactive actions  capital expenditures  Such plans  risk appetite  data points  network conditions  traffic data  virtualized network  cloud environments  network development  

**Content contained on this site is provided on an “as is” basis. 4Internet, LLC makes no commitments regarding the content and does not review it, so don't assume that it's been reviewed. What you see here may not be accurate and should not be relied upon. The content does not necessarily represent the views and opinions of 4Internet, LLC. You use this service and everything you see here at your own risk. Content displayed may be subject to copyright. Content is removed on a case by case basis. To request that content be removed, contact us using the following form: Contact Us.