Internet Industry Search Engine

Conquering the Challenges of Data Preparation for Predictive Maintenance

Source: infoq.com

Jan 4, 2019 8:15 AM 2+ week ago

Predictive maintenance (PdM) applications aim to apply machine learning (ML) on IIoT datasets in order to reduce occupational hazards, machine downtime, and other costs. In this article, author addresses some of the data preparation challenges faced by the industrial practitioners of ML and the solutions for data ingest and feature engineering related to PdM.Read more.

Search Builder

(Click to add to search box)
Search Suggestions Level 1
training data  feature table  feature engineering  machine downtime  IIoT datasets  dataflow management tools  dataflow management tool  Data Preparation  time series data  Predictive Maintenance Conquering  applications aim  Dataflow management tools  failure events  IIoT data  data preparation  HVAC sensor values  Apache Spark  store training data  StreamSets leverages Kubernetes  machines exhibit characteristics  feature tables  Jupyter notebook I  Key Takeaways Machine  Lagging Features PdM  data scientists iterate  networked manufacturing systems  Spark job  IoT data sources  Scalable Feature Engineering  feature engineering concepts  topology agnostic dataflows  notional PdM application  failure event  batch job  data movement  docker network  schema drift  data sources  PdM applications  LSTM algorithms  LSTM implementation  Predictive maintenance  ML algorithms  control network  operator logs  data silos  IIoT logs  data scientists  ML engineers  generalizable patterns  Manufacturing processes  model development  measure hundreds  time field  log fields  data collection  IIoT dataset  weather details  IoT values  device ID  manufacturing process  access IoT  feature creation  IIoT records  time someone  component parts  feature engineering  weather logs  Spark eliminates  feature extraction  LSTM algorithm  MQTT records  OJAI API   RemainingUsefulLife  demo application  recording data  PdM models  training datasets  stream records  Jupyter notebook  the notebook  Conclusion Machine  maintenance strategies  training models  maintenance applications  data storage  data access  data engineer  developer evangelist  DataOps teams  Ian coordinates  Dataset object  Scala code  NoSQL database  batch jobs  work week  supervised machine  machine cycles  time window  regression model  model training  schema flexibility  Spark process  MapR connector  Spark processes  Spark SQL  HVAC system  Github project  MQTT client  HVAC data  Kafka API  stream buffers  Big Data  data gateways  Grafana docs  OpenTSDB visualization  ML deals  mynetwork docker  OpenTSDB datasource  Implementing PdM  data source  datasource definition  air conditioning  
Search Suggestions Level 2
Retrofitting vehicle  Data Preparation  Predictive Maintenance  Geotab sensors  Business Value  IoT roundup  
Search Suggestions Level 3
industry umbrella groups  official ISO seal  IP network connections  IoT networking standards  Network World communities  sensor data  Uptake system triangulates  Commercial Vehicle Solutions  problems fleets today  video surveillance  IoT devices  connectivity technologies  WAN networks  Cisco estimates  IoT connectivity  IP traffic  hardware witness  internet part  coolant levels  value propositions  security features  deployment process  Predix Edge  IIoT companies  IoT tasks  network protocols  access points  GE Aruba  IoT standards  IoT systems  heart rate  cloud management  International Organization  connectivity framework  smartphone app  truck repairs  data collection  efficiency algorithm  Geotab customers  aligning withUptake  Scott Sutarik  intelligence firm  data science  productivity problems  ambient temperature  coolant level  Hoyoung Pak  Uptake system  Pak notes  analytics system  vehicle data  contextual data  Uptake software  way Uptake  downtime events  vehicle operation  fuel cost  Onboard diagnostics  maintenance costs  Uptake solution  Geotab sensors  maintenance solutions  

**Content contained on this site is provided on an “as is” basis. 4Internet, LLC makes no commitments regarding the content and does not review it, so don't assume that it's been reviewed. What you see here may not be accurate and should not be relied upon. The content does not necessarily represent the views and opinions of 4Internet, LLC. You use this service and everything you see here at your own risk. Content displayed may be subject to copyright. Content is removed on a case by case basis. To request that content be removed, contact us using the following form: Contact Us.